Holomorphic Representation of Constant Mean Curvature Surfaces in Minkowski Space: Consequences of Non-compactness in Loop Group Methods

نویسندگان

  • DAVID BRANDER
  • NICHOLAS SCHMITT
چکیده

We give an infinite dimensional generalized Weierstrass representation for spacelike constant mean curvature (CMC) surfaces in Minkowski 3-space R2,1. The formulation is analogous to that given by Dorfmeister, Pedit and Wu for CMC surfaces in Euclidean space, replacing the group SU2 with SU1,1. The non-compactness of the latter group, however, means that the Iwasawa decomposition of the loop group, used to construct the surfaces, is not global. We prove that it is defined on an open dense subset, after doubling the size of the real form SU1,1, and prove several results concerning the behavior of the surface as the boundary of this open set is encountered. We then use the generalized Weierstrass representation to create and classify new examples of spacelike CMC surfaces in R2,1. In particular, we classify surfaces of revolution and surfaces with screw motion symmetry, as well as studying another class of surfaces for which the metric is rotationally invariant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constant Mean Curvature Surfaces in Euclidean and Minkowski 3-spaces

Spacelike constant mean curvature surfaces in Minkowski 3-space L have an infinite dimensional generalized Weierstrass representation. This is analogous to that given by Dorfmeister, Pedit and Wu for constant mean curvature surfaces in Euclidean space, replacing the group SU(2) with SU(1, 1). The non-compactness of the latter group, however, means that the Iwasawa decomposition of the loop grou...

متن کامل

$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$

Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...

متن کامل

Timelike Surfaces of Constant Mean Curvature ±1 in Anti-de Sitter 3-space H 3 1 (−1)

It is shown that timelike surfaces of constant mean curvature ±1 in anti-de Sitter 3-space H 1 (−1) can be constructed from a pair of Lorentz holomorphic and Lorentz antiholomorphic null curves in PSL2R via Bryant type representation formulae. These Bryant type representation formulae are used to investigate an explicit one-to-one correspondence, the so-called Lawson-Guichard correspondence, be...

متن کامل

Hyperbolic surfaces of $L_1$-2-type

In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

متن کامل

Constant Mean Curvature Surfaces with Delaunay Ends in 3-dimensional Space Forms

This paper presents a unified treatment of constant mean curvature (cmc) surfaces in the simply-connected 3-dimensional space forms R, S and H in terms of meromorphic loop Lie algebra valued 1-forms. We discuss global issues such as period problems and asymptotic behaviour involved in the construction of cmc surfaces with nontrivial topology. We prove existence of new examples of complete non-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008